Design Exploration and
Experimental Validation of
Abstract Requirements

Roozbeh Farahbod’
Vincenzo Gervasi?
Uwe Glaesser’

Mashaal Memon'

' Simon Fraser University, Vancouver, BC

% University of Pisa, Italy

First slide

/

pa_Modeling
i

ar_Formal_specifications

pe_Specifie

9 _Cresign_ E}{plnratinn_a...]

al_Academics

te_Formal_methods

—

@Dpnzal_nf_zn@ Formality

... but with controllable costs!
CoreASM REFSQ 2006 2

Talk outline

* Motivations

* Abstract State Machines in a nutshell

e CoreASM: an executable ASM language
* The role of CoreASM in RE

- Features of the language relevant for RE
- Features of the architecture relevant for RE

e Current state and future work
e Conclusions

CoreASM REFSQ 2006 3

* Abstract State Machines (ASM) are known to
be effective in specifying and modeling a variety
of systems:

- Languages, protocols, reactive/embedded systems,
web services, information systems, social behavior,
CPUs and other hardware, ...

- Several books and hundreds of papers published
with examples (many of them quite large)

 Several compilers and interpreters for various
ASM dialect exist

- All of them targeted at detailed specification

CoreASM REFSQ 2006 4

* Research question:
What does it take to profitably use ASMs at
the requirements or early design stages?

e Qur answer:

- Design, specify and implement a language and
related tools optimized for high-level design

- Make rapid prototyping of abstract specifications
possible, enhance freedom of experimentation

- Provide all the advantages of executable
specifications (incl. validation)

CoreASM REFSQ 2006 5

ASM in a nutshell

* A signature 2 is a finite collection of function names f

- Each function name has an arity
- Nullary functions are called constants
- The constants frue, false, undef are always defined

* A state A for 2 is a non-empty set X (the superuniverse of A)
together with an interpretation f* for each function name f in £

- If f is an n-ary function name of X, then f*: X"—X

- If cis a constant of X, then c*eX

* Functions can be static or dynamic

- The value of a dynamic function can change from state to
state

CoreASM REFSQ 2006 6

ASM in a nutshell

e Alocation is a pair I=(f,(a,....a))

- The contents of | in Aare f'(a,,....a)

n

* Locations can be updated
- Update u=(l,v)
- Update set U is a set of updates

- An update set is consistent if there are no clashing updates
to the same location

* Firing of updates moves from one state to the next:

v if(1,v)eU

A+U)1)= A(l) otherwise

CoreASM REFSQ 2006 7

ASM in a nutshell

* ASM specifications describe through updates
how the state of the specified system evolves
over time

* Important: values here are totally general
mathematical structures (abstraction)

e Rules:
- Updates: f(a1,...,an):=v
— Conditional: if b then P else Q

- Sequence and Parallel: P seq Q, P par Q
- Parallelism and nondeterminism: forall and choose

CoreASM REFSQ 2006 8

An example

* A fragment from a published ASM spec of the
Broy-Lamport problem (modeling RPC calls):

i CallName{Me)=read then
if MembLocsFrrsti CallArgs{Me))) =false then RETURN[creeption, BadArg)
elseif Fuil then RETURAN (exception, MemFailure)
else BETURN wormal, Memory(Fuest{CallArgs{ Me)]}
endif
elseif CaliNemefMe) =wrife then
if MembLocs{First{ CallArgs{ Me)))=fulse or Mem Vals{Second{CallArgs{ Me)])=false then
RETURN{erceplion, BadAry)
elseif Fod then RETUVRN erception, MemFailure)
else
Memory(First{CallArgs{Me))) := Second{CallArgs{Me))
if Suceeed then KETURN normal. OF) endif
endif
endif

o ASM = Pseudo-code over abstract data

CoreASM REFSQ 2006 9

CoreASM: The very idea

CoreASM REFSQ 2006

Problem

CoreASM

Abstract Model

Ground model

Construction AsmL, XASM, ...

Coding Implementation

Refinement

10

The CoreASM Project

* A lean, executable, and extensible ASM
language which is faithful to its mathematical
definition

* An extensible, platform-independent execution
engine

* A supporting fool environment for
- High-level design
- Experimental validation
- Formal verification

CoreASM REFSQ 2006 11

ASMs in RE

 Executability is a useful feature to have in RE
- Animation, tracing, validation, model checking, etc.

* But most executable specification languages
are costly

* CoreASM tries to change the economics and
make writing executable high-level
specifications convenient through

- Features of the language
- Features of the architecture

CoreASM REFSQ 2006 12

CoreASM — language features

* CoreASM is an untyped language

- Types can be declared and if they are, the spec will
be type checked

- But they are not compulsory
- Even better, partial typing is possible

- Spontaneous casts (e.g., from “12” to 12) as
needed

- Same spirit as scripting languages
* Makes writing “quick&dirty” specs possible

- Encourages experimentation,
- avoids early commitment

CoreASM REFSQ 2006 13

CoreASM — language features

* Non-determinism expressed through choose
clauses

* Abstraction expressed through:

- Oracle functions (e.g., value input by user)
- Abstract macros (e.g., executed symbolically)

* Both are explicitly marked
- No confusion between abstraction and ambiguity

* Distributed systems modeled by multi-agent
ASMs

- Scheduling policy can be left arbitrary or specified

CoreASM REFSQ 2006 14

CoreASM — architecture features

We want to reduce the cost of writing a spec

lence, we have to reduce the cost of encoding
(from domain concepts to language concepts)

Hence, we want to offer a domain-specific
anguage — for all domains...

Hence, we designed an extensible language,
which can be adapted to several domains

Net result: plug-in architecture

CoreASM REFSQ 2006 15

CoreASM — architecture features

* Plug-ins provide:
- New backgrounds

e Data types with operations, constants, literals and
notation, e.g.: trees

e Static or derived functions, e.g.: now for timed ASMs
- New rule forms

* Syntax and semantics to simplify writing, e.g.: signal
agent with value for communications

- New scheduling and choosing policies
* e.g.: priority-based agent scheduling
- Extensions to the execution cycle
* e.g.. preprocessing of source specs, or monitoring
updates

CoreASM REFSQ 2006 16

Kernel of a full environment

File Help
Mew Opon | Bt

CoreASH ATH SINETT

Fanions
W

Standard

) - < Sl Visw
2 L then Bl | et et vrm | vocatastany view
- Formard one swep
e staos2
[—
. v

fr—
Meiage View | Odpd Ve Ran View L o

Numbers

CoreASM Engine

Sets

—»{ Starting Step StartStep

Choosing
Agents

RefrieveAgents

Selecting
Agents

Selectagents

Step
Succeeded

Time

Jrue
= undef

»{ Aggregation

Flse|

Initializing
E|

Update
Failed

Program
Execution

Be @

SCHEDULER

CoreASM REFSQ 2006 17

The architecture

e Control API:

e interface to the
environment

* interface to the engine

e Parser

e builds an annotated
Abstract Syntax Tree

* based on grammar
fragments contributed
by plug-ins

CoreASM REFSQ 2006

Applications
Control API
Parser
Abstract | . Interpreter
Storage P
------- Scheduler |-------

CoreASM Engine

18

The architecture

* Abstract Storage

* a representation of
the current state

* Interpreter

* generates an update
set, given an AST and
the current state

e Scheduler

* Orchestrates every
computation step

* Organizes the
execution of agents

CoreASM REFSQ 2006

Applications

Control API

Abstract
Storage

Parser

Interpreter

Scheduler

CoreASM Engine

19

A micro-kernel approach

* A micro-kernel approach

— Kernel provides the bare minimum structure
* Updates, true, false, undef, etc.
- Other language elements are provided by plug-ins

* |[ntegers, sets, strings, etc.
* |[f-rule, choose-rule, block-rule, etc.

- Standard ASM features are provided by plug-ins in
the standard library

- Custom extensions can be implemented by custom
plug-ins

CoreASM REFSQ 2006 20

Extension points

Example: Loading Specifications

loadCommand

Parsing Header

ParseHeader —‘

FarseSpecification

Loading
Plug-ins

LoadSpecFlugins Parsing Spec

CONTROL API / '\ _ PARSER /

Initializing
State

Loading
Initial State

InitAbstractStorage Executelnitialization

'\ ABSTRACT STORAGE / ' SCHEDULER /

CoreASM REFSQ 2006 21

Example: Tabbed Block Rules

* A simple parallel block rule plugin may require
par and endpar

if flag par a:=1; b:=2 endpar else c:=3

e |t doesn't look nice? Indentation looks better?

if flag
a:=1
b:=2

else
c:=3

* Using the extension points, a plugin can

- register itself to be called before the parsing mode

- read the indentation and convert it to par-endpar

CoreASM REFSQ 2006 22

Example: Spec of a language

* A fragment of the actual specification of
CoreASM (the language), showing domain-
specific constructs and use of abstraction

(1 [7i,. .., .ﬂ> if isFunctionName(z) then
choose i € [1..n| with —evaluated()\;)

POS = A;
ifnone

where
undefined(r) = Ae € ELEMENT : name(e) = z
isFunctionName(z) = Jde € ELEMENT : name(e) = x A isFunction(e)

CoreASM REFSQ 2006 23

Example: Integration with Java

* For testing and verification purposes, it is useful
to have the formal specification interact with the
implementation

* A plugin provides integration with Java

- Instantiation of objects (create o as JavaClass)
- Calling methods, accessing fields (invoke o->m(...))

- Marshalling and unmarshalling (as spontaneous
casts) of basic types

- Marshalling and unmarshalling of Collection and
String (treated as significant special cases)

CoreASM REFSQ 2006 o4

Example: Integration with Java

* Typical uses:

- Running self-checking, side-to-side parallel runs to
specification and implementation

- Accessing special OS interfaces from CoreASM
(e.g., sockets)

- Adding GUIs or GUI mock-ups to specifications
* Moreover:

- CoreASM engine can be called from Java
- Two-way interaction possible

CoreASM REFSQ 2006 25

Current state

* ASM specification of

- The kernel
- Basic ASM and Turbo ASM rule forms
- Numbers and Sets

* WWorking implementation of
- The kernel (minus a few low-priority functions)
- Most rule forms

- Numbers, Sets, Strings, etc.
- GUI (still rough edges, though)

CoreASM REFSQ 2006 26

Fils Hidy:

ew Open Eus

CopchSM ATH

indi IpizPuls

ruls InitPul

FEdE idl#

rules LTHPTragram =

i timecptEvent 1han

I Aance |] |
pRcTrCar L atm
ETH 401K
alus
-l.l. l..
ITEPreceEming
ETEErT
Fille EITMLdle
]1 Ci : 118 lin.':. SCETLTATL -II-
[
i W
ELEEU FLEE1 TLeEs
]
B Sl W Lighpedl Vi = e

CoreASM REFSQ 2006

fhen

Halnk;

Fanifions

Ergin Yinw
Ihprd e w1 drm P Dl vy e

. Forma | i =

Homru | el

A dDiviee pasl G

27

» Complete implementation of the kernel

* Implementation of more sophisticated data
types as plugins

* I[mplementation of type checking, assertions,
iInvariants as custom plugin
- These do not exist in traditional ASMs

e Under consideration: rewrite the GUI as an
Eclipse plug-in

- Integration with modeling and development
environment

CoreASM REFSQ 2006 28

Conclusions

* Bringing RE concerns into formal language
design

 CoreASM guiding principles:

- Preservation of pure ASM semantics
- Ensuring freedom through extensibility

* Model-based engineering of abstract
requirements in early phases of design

* A platform-independent open source project

http://lwww.coreasm.org

CoreASM REFSQ 2006 29

Last slide

* Which quality features are addressed by the paper?

- Validation and verification through executable specifications

* What is the main novelty/contribution of the paper?

- A formal specification method which is designed to be low-cost and executable,
yet scalable to full-fledged formality

* How will this novelty/contribution improve RE practice or RE research?

- Support adoption of ASMs in industry
- Make formal methods practical in RE context

* What are the main problems with the novelty/contribution and/or with the
paper?

- Work in progress, effectiveness unproven
- Risk of loosing advantages of hard FMs if too much “hardness” is removed

* Can the proposed approach be expected to scale to real-life problems?

- ASMs are known to scale well (they have been used for large real-life problems)
- Scalability of investment and extensibility unproven, but apparently possible

CoreASM REFSQ 2006 30

